取消
清空記錄
歷史記錄
清空記錄
歷史記錄
Ugo Basile機(jī)械壓痛儀采用Randall-Selitto測(cè)痛法,通過自動(dòng)化進(jìn)行大小鼠鼠爪壓痛閾值測(cè)試。已被證明在多學(xué)術(shù)和工業(yè)實(shí)驗(yàn)室研究中,有效幫助鎮(zhèn)痛藥物的快速精確篩選。
實(shí)驗(yàn)動(dòng)物傷害感受性閾值的確定對(duì)于藥物的抗傷害活性具有重要意義,常通過大小鼠后肢反應(yīng)(縮跳躍、舔足、跳躍)確定,*常用的疼痛過敏方法為壓痛測(cè)試。
Ugo basile 機(jī)械壓痛儀是一種量化對(duì)大小鼠后足背部施加線性增加的機(jī)械力,引發(fā)縮足反應(yīng)的測(cè)試設(shè)備。是基于 Randall 和Selitto 于 1957 年研究成果(Randall-Selitto 測(cè)試法)開發(fā)而來(lái),為評(píng)估鎮(zhèn)痛藥物影響疼痛組織對(duì)機(jī)械壓力刺激反應(yīng)閾值變化的經(jīng)典工具。機(jī)械壓痛儀避免了手動(dòng)施加壓力,提供了更好的刺激一致性,比傳統(tǒng)的纖維絲和電子測(cè)痛儀更適合檢測(cè)鼠爪整體機(jī)械痛閾值變化。
測(cè)試時(shí),將大小鼠爪子置于底座和錐形刺激桿之間,驅(qū)動(dòng)馬達(dá)以恒定速率推動(dòng)讀數(shù)標(biāo)尺上的重力砝碼前進(jìn)以增加錐形刺激桿的壓力。當(dāng)大小鼠出現(xiàn)縮足反應(yīng)時(shí),測(cè)試結(jié)果在讀出標(biāo)尺上讀出。測(cè)試模塊為具有生物惰性的材質(zhì)組成,摩擦系數(shù)低,動(dòng)物可輕松縮回爪子。
優(yōu)勢(shì)特點(diǎn):
一、歷史悠久,大量研究支持
Ugo basile 機(jī)械壓痛儀基于50多年的專業(yè)知識(shí)和持續(xù)的產(chǎn)品開發(fā),測(cè)量機(jī)械刺激引起的大小鼠鼠爪傷害
感受閾值測(cè)量。自1965年以來(lái),已有多個(gè)學(xué)術(shù)研究室使用Ugo basile 機(jī)械壓痛儀發(fā)表千篇文章。
二、經(jīng)典的藥物篩選設(shè)備
機(jī)械壓痛儀具有腳爪整體機(jī)械痛刺激特點(diǎn),而****對(duì)此*為為敏感,這對(duì)快速、精確篩選鎮(zhèn)痛藥物具有獨(dú)特優(yōu)勢(shì)。
三、單機(jī)三種量程,施力恒定
可設(shè)置0-250g、0-500g、0-750g三種量程,可滿足大小鼠測(cè)試需求,電機(jī)自動(dòng)化控制,性能穩(wěn)定,排除了人為施力不恒定對(duì)測(cè)試結(jié)果的干擾。
四、無(wú)需校準(zhǔn),可升級(jí)數(shù)字式記錄型號(hào)
設(shè)備無(wú)需校準(zhǔn),實(shí)驗(yàn)人員可控制腳踏開關(guān)實(shí)時(shí)結(jié)束測(cè)試。可升級(jí)成數(shù)字式記錄型號(hào)檢測(cè)鼠爪縮足現(xiàn)象并自動(dòng)記錄數(shù)據(jù)。
應(yīng)用領(lǐng)域:
機(jī)械壓痛儀可用于對(duì)正常和發(fā)炎的大小鼠爪進(jìn)行快速精確的止痛藥物篩選,以及對(duì)脊髓反射的有害刺激的反應(yīng)閾值的測(cè)定,可檢測(cè)脊髓損傷后神經(jīng)病理性疼痛。其測(cè)試結(jié)果可的可復(fù)現(xiàn)性非常高,可輕松在不同實(shí)驗(yàn)室進(jìn)行結(jié)果的復(fù)現(xiàn)。
型號(hào)特點(diǎn):
37215 | 大小鼠通用機(jī)械壓痛儀完整系統(tǒng),包括電驅(qū)動(dòng)主機(jī)、腳踏開關(guān)、壓力砝碼等 |
37216 | 小鼠**型機(jī)械壓痛儀完整系統(tǒng),包括電驅(qū)動(dòng)主機(jī)、腳踏開關(guān)、壓力砝碼等 |
37215-BUNDLE | 數(shù)字式大小鼠通用機(jī)械壓痛儀完整系統(tǒng) |
37216-BUNDLE | 數(shù)字式小鼠**型機(jī)械壓痛儀完整系統(tǒng) |
37215-100 | 升級(jí)數(shù)字式組件 |
參考文獻(xiàn):
1.Baloh, Robert H et al. “Transplantation of human neural progenitor cells secreting GDNF into the spinal cord of patients with ALS: a phase 1/2a trial.” Nature medicine vol. 28,9 (2022): 1813-1822. doi:10.1038/s41591-022-01956-3
2.Bosse, Gabriel D et al. “The 5α-reductase inhibitor finasteride reduces opioid self-administration in animal models of opioid use disorder.” The Journal of clinical investigation vol. 131,10 (2021): e143990. doi:10.1172/JCI143990
3.Bang, Sangsu et al. “GPR37 regulates macrophage phagocytosis and resolution of inflammatory pain.” The Journal of clinical investigation vol. 128,8 (2018): 3568-3582. doi:10.1172/JCI99888
4.Goebel, Andreas et al. “Passive transfer of fibromyalgia symptoms from patients to mice.” The Journal of clinical investigation vol. 131,13 (2021): e144201. doi:10.1172/JCI144201
5.Sikandar, Shafaq et al. “Brain-derived neurotrophic factor derived from sensory neurons plays a critical role in chronic pain.” Brain : a journal of neurology vol. 141,4 (2018): 1028-1039. doi:10.1093/brain/awy009
6.Vidal-Torres, Alba et al. “Bispecific sigma-1 receptor antagonism and mu-opioid receptor partial agonism: WLB-73502, an analgesic with improved efficacy and safety profile compared to strong opioids.” Acta pharmaceutica Sinica. B vol. 13,1 (2023): 82-99. doi:10.1016/j.apsb.2022.09.018
7.Mousa, Shaaban A et al. “Superior control of inflammatory pain by corticotropin-releasing factor receptor 1 via opioid peptides in distinct pain-relevant brain areas.” Journal of neuroinflammation vol. 19,1 148. 15 Jun. 2022, doi:10.1186/s12974-022-02498-8
8.Zhou, Danli et al. “Inhibition of apoptosis signal-regulating kinase by paeoniflorin attenuates neuroinflammation and ameliorates neuropathic pain.” Journal of neuroinflammation vol. 16,1 83. 11 Apr. 2019, doi:10.1186/s12974-019-1476-6
9.Wang, Wenying et al. “Exchange factor directly activated by cAMP-PKCε signalling mediates chronic morphine-induced expression of purine P2X3 receptor in rat dorsal root ganglia.” British journal of pharmacology vol. 175,10 (2018): 1760-1769. doi:10.1111/bph.14191
10.Sala, Emanuele et al. “Improved efficacy, tolerance, safety, and abuse liability profile of the combination of CR4056 and morphine over morphine alone in rodent models.” British journal of pharmacology vol. 177,14 (2020): 3291-3308. doi:10.1111/bph.15049
Ugo Basile機(jī)械壓痛儀采用Randall-Selitto測(cè)痛法,通過自動(dòng)化進(jìn)行大小鼠鼠爪壓痛閾值測(cè)試。已被證明在多學(xué)術(shù)和工業(yè)實(shí)驗(yàn)室研究中,有效幫助鎮(zhèn)痛藥物的快速精確篩選。
實(shí)驗(yàn)動(dòng)物傷害感受性閾值的確定對(duì)于藥物的抗傷害活性具有重要意義,常通過大小鼠后肢反應(yīng)(縮跳躍、舔足、跳躍)確定,*常用的疼痛過敏方法為壓痛測(cè)試。
Ugo basile 機(jī)械壓痛儀是一種量化對(duì)大小鼠后足背部施加線性增加的機(jī)械力,引發(fā)縮足反應(yīng)的測(cè)試設(shè)備。是基于 Randall 和Selitto 于 1957 年研究成果(Randall-Selitto 測(cè)試法)開發(fā)而來(lái),為評(píng)估鎮(zhèn)痛藥物影響疼痛組織對(duì)機(jī)械壓力刺激反應(yīng)閾值變化的經(jīng)典工具。機(jī)械壓痛儀避免了手動(dòng)施加壓力,提供了更好的刺激一致性,比傳統(tǒng)的纖維絲和電子測(cè)痛儀更適合檢測(cè)鼠爪整體機(jī)械痛閾值變化。
測(cè)試時(shí),將大小鼠爪子置于底座和錐形刺激桿之間,驅(qū)動(dòng)馬達(dá)以恒定速率推動(dòng)讀數(shù)標(biāo)尺上的重力砝碼前進(jìn)以增加錐形刺激桿的壓力。當(dāng)大小鼠出現(xiàn)縮足反應(yīng)時(shí),測(cè)試結(jié)果在讀出標(biāo)尺上讀出。測(cè)試模塊為具有生物惰性的材質(zhì)組成,摩擦系數(shù)低,動(dòng)物可輕松縮回爪子。
優(yōu)勢(shì)特點(diǎn):
一、歷史悠久,大量研究支持
Ugo basile 機(jī)械壓痛儀基于50多年的專業(yè)知識(shí)和持續(xù)的產(chǎn)品開發(fā),測(cè)量機(jī)械刺激引起的大小鼠鼠爪傷害
感受閾值測(cè)量。自1965年以來(lái),已有多個(gè)學(xué)術(shù)研究室使用Ugo basile 機(jī)械壓痛儀發(fā)表千篇文章。
二、經(jīng)典的藥物篩選設(shè)備
機(jī)械壓痛儀具有腳爪整體機(jī)械痛刺激特點(diǎn),而****對(duì)此*為為敏感,這對(duì)快速、精確篩選鎮(zhèn)痛藥物具有獨(dú)特優(yōu)勢(shì)。
三、單機(jī)三種量程,施力恒定
可設(shè)置0-250g、0-500g、0-750g三種量程,可滿足大小鼠測(cè)試需求,電機(jī)自動(dòng)化控制,性能穩(wěn)定,排除了人為施力不恒定對(duì)測(cè)試結(jié)果的干擾。
四、無(wú)需校準(zhǔn),可升級(jí)數(shù)字式記錄型號(hào)
設(shè)備無(wú)需校準(zhǔn),實(shí)驗(yàn)人員可控制腳踏開關(guān)實(shí)時(shí)結(jié)束測(cè)試??缮?jí)成數(shù)字式記錄型號(hào)檢測(cè)鼠爪縮足現(xiàn)象并自動(dòng)記錄數(shù)據(jù)。
應(yīng)用領(lǐng)域:
機(jī)械壓痛儀可用于對(duì)正常和發(fā)炎的大小鼠爪進(jìn)行快速精確的止痛藥物篩選,以及對(duì)脊髓反射的有害刺激的反應(yīng)閾值的測(cè)定,可檢測(cè)脊髓損傷后神經(jīng)病理性疼痛。其測(cè)試結(jié)果可的可復(fù)現(xiàn)性非常高,可輕松在不同實(shí)驗(yàn)室進(jìn)行結(jié)果的復(fù)現(xiàn)。
型號(hào)特點(diǎn):
37215 | 大小鼠通用機(jī)械壓痛儀完整系統(tǒng),包括電驅(qū)動(dòng)主機(jī)、腳踏開關(guān)、壓力砝碼等 |
37216 | 小鼠**型機(jī)械壓痛儀完整系統(tǒng),包括電驅(qū)動(dòng)主機(jī)、腳踏開關(guān)、壓力砝碼等 |
37215-BUNDLE | 數(shù)字式大小鼠通用機(jī)械壓痛儀完整系統(tǒng) |
37216-BUNDLE | 數(shù)字式小鼠**型機(jī)械壓痛儀完整系統(tǒng) |
37215-100 | 升級(jí)數(shù)字式組件 |
參考文獻(xiàn):
1.Baloh, Robert H et al. “Transplantation of human neural progenitor cells secreting GDNF into the spinal cord of patients with ALS: a phase 1/2a trial.” Nature medicine vol. 28,9 (2022): 1813-1822. doi:10.1038/s41591-022-01956-3
2.Bosse, Gabriel D et al. “The 5α-reductase inhibitor finasteride reduces opioid self-administration in animal models of opioid use disorder.” The Journal of clinical investigation vol. 131,10 (2021): e143990. doi:10.1172/JCI143990
3.Bang, Sangsu et al. “GPR37 regulates macrophage phagocytosis and resolution of inflammatory pain.” The Journal of clinical investigation vol. 128,8 (2018): 3568-3582. doi:10.1172/JCI99888
4.Goebel, Andreas et al. “Passive transfer of fibromyalgia symptoms from patients to mice.” The Journal of clinical investigation vol. 131,13 (2021): e144201. doi:10.1172/JCI144201
5.Sikandar, Shafaq et al. “Brain-derived neurotrophic factor derived from sensory neurons plays a critical role in chronic pain.” Brain : a journal of neurology vol. 141,4 (2018): 1028-1039. doi:10.1093/brain/awy009
6.Vidal-Torres, Alba et al. “Bispecific sigma-1 receptor antagonism and mu-opioid receptor partial agonism: WLB-73502, an analgesic with improved efficacy and safety profile compared to strong opioids.” Acta pharmaceutica Sinica. B vol. 13,1 (2023): 82-99. doi:10.1016/j.apsb.2022.09.018
7.Mousa, Shaaban A et al. “Superior control of inflammatory pain by corticotropin-releasing factor receptor 1 via opioid peptides in distinct pain-relevant brain areas.” Journal of neuroinflammation vol. 19,1 148. 15 Jun. 2022, doi:10.1186/s12974-022-02498-8
8.Zhou, Danli et al. “Inhibition of apoptosis signal-regulating kinase by paeoniflorin attenuates neuroinflammation and ameliorates neuropathic pain.” Journal of neuroinflammation vol. 16,1 83. 11 Apr. 2019, doi:10.1186/s12974-019-1476-6
9.Wang, Wenying et al. “Exchange factor directly activated by cAMP-PKCε signalling mediates chronic morphine-induced expression of purine P2X3 receptor in rat dorsal root ganglia.” British journal of pharmacology vol. 175,10 (2018): 1760-1769. doi:10.1111/bph.14191
10.Sala, Emanuele et al. “Improved efficacy, tolerance, safety, and abuse liability profile of the combination of CR4056 and morphine over morphine alone in rodent models.” British journal of pharmacology vol. 177,14 (2020): 3291-3308. doi:10.1111/bph.15049