取消
清空記錄
歷史記錄
清空記錄
歷史記錄
植入式生理信號無線遙測系統用于長時間測量清醒無束縛的大鼠、小鼠、兔子、比格犬、猴子、魚等多種動物的心率、體溫和活動量等生理參數。使用此系統可以保證動物在籠內自由活動,不需要麻醉或束縛,這樣測量到的生理信號更能反映自然狀態下的動物生理狀況。可用于生物節律研究和相關的生命體征監測。
植入式生理信號無線遙測系統可無線遙測和記錄實驗動物的:心率、體溫、活動量.
植入式生理信號無線遙測系統由植入體(E-Mitter)、接收數據轉換器(Receiver)、電纜和記錄分析計算機(VitalView)構成。1厘米大小的植入體E-Mitter集成了傳感器、放大器和無線信號發射器,根據測量信號不同有多種規格。植入式E-Mitter轉發器不需電池,由接收數據轉換器(Receiver)輸出電力。實驗人員將植入體埋入動物皮下,生理信號被植入體采集到并轉換成相應的電信號后用無線電發射出來,由飼養籠下方的接收器接收到并傳遞給數據轉換器,完成數據轉換后送入**處理器進行數據處理。系統可同時連接32個接收器,完成大規模的試驗。
植入體(E-Mitter)是植入在動物體內的微型設備,它集成了傳感器,放大器,數字轉換,無線發射的功能并解決了生物體的抗排異反應。植入體有用于測量生物心率,體溫和活動量等多種參數的規格。
植入式生理信號無線遙測系統的主要特點:
? 無線遙測
? 植入式E-Mitter轉發器沒有電池
? 長期監測-植入裝置后允許連續、遙測實驗動物一生
? 準確、可靠,報告清醒無束縛動物的生理和行為數據
E-Mitter(植入體系統)主要技術參數:
ER4000 信號接收器
ER4000信號接收器,用于給E-Mitters充電和接收E-Mitters傳回來的測量數據。適合標準的大小鼠飼養籠具。
信號接收器的主要參數
VitalView軟件
激發接收器和感應器通過VitalView軟件連接到電腦。可以記錄240個數據通道,典型應用120個測試對象,對于E-mitter系統32個測試對象。
VitalView軟件可以設置實驗參數和采集數據。軟件管理與硬件的連接,并且儲存顯示基本的圖形化的數據分析。軟件也提供統計形式的數據顯示,可以輸出數據。
如只需要測量大鼠、小鼠的核心體溫,可以選擇植入式體溫膠囊,對體溫數據進行遙測:
參考文獻:
1.Ganeshan, Kirthana et al. “Energetic Trade-Offs and Hypometabolic States Promote Disease Tolerance.” Cell vol. 177,2 (2019): 399-413.e12. doi:10.1016/j.cell.2019.01.050
2.Li, Yongguo et al. “Secretin-Activated Brown Fat Mediates Prandial Thermogenesis to Induce Satiation.” Cell vol. 175,6 (2018): 1561-1574.e12. doi:10.1016/j.cell.2018.10.016
3.Dodd, Garron T et al. “Leptin and insulin act on POMC neurons to promote the browning of white fat.” Cell vol. 160,1-2 (2015): 88-104. doi:10.1016/j.cell.2014.12.022
4.Pi?ol, Ramón A et al. “Brs3 neurons in the mouse dorsomedial hypothalamus regulate body temperature, energy expenditure, and heart rate, but not food intake.” Nature neuroscience vol. 21,11 (2018): 1530-1540. doi:10.1038/s41593-018-0249-3
5.Li, Jin et al. “Neurotensin is an anti-thermogenic peptide produced by lymphatic endothelial cells.” Cell metabolism vol. 33,7 (2021): 1449-1465.e6. doi:10.1016/j.cmet.2021.04.019
6.Pi?ol, Ramón A et al. “Preoptic BRS3 neurons increase body temperature and heart rate via multiple pathways.” Cell metabolism vol. 33,7 (2021): 1389-1403.e6. doi:10.1016/j.cmet.2021.05.001
7.Krisko, Tibor I et al. “Dissociation of Adaptive Thermogenesis from Glucose Homeostasis in Microbiome-Deficient Mice.” Cell metabolism vol. 31,3 (2020): 592-604.e9. doi:10.1016/j.cmet.2020.01.012
8.Sustarsic, Elahu G et al. “Cardiolipin Synthesis in Brown and Beige Fat Mitochondria Is Essential for Systemic Energy Homeostasis.” Cell metabolism vol. 28,1 (2018): 159-174.e11. doi:10.1016/j.cmet.2018.05.003
9.Heine, Markus et al. “Lipolysis Triggers a Systemic Insulin Response Essential for Efficient Energy Replenishment of Activated Brown Adipose Tissue in Mice.” Cell metabolism vol. 28,4 (2018): 644-655.e4. doi:10.1016/j.cmet.2018.06.020
10.Dodd, Garron T et al. “A Hypothalamic Phosphatase Switch Coordinates Energy Expenditure with Feeding.” Cell metabolism vol. 26,2 (2017): 375-393.e7. doi:10.1016/j.cmet.2017.07.013
11.Keipert, Susanne et al. “Long-Term Cold Adaptation Does Not Require FGF21 or UCP1.” Cell metabolism vol. 26,2 (2017): 437-446.e5. doi:10.1016/j.cmet.2017.07.016
12.Wang, Tongfei A et al. “Thermoregulation via Temperature-Dependent PGD2 Production in Mouse Preoptic Area.” Neuron vol. 103,2 (2019): 309-322.e7. doi:10.1016/j.neuron.2019.04.035
13.Chavan, Rohit et al. “Liver-derived ketone bodies are necessary for food anticipation.” Nature communications vol. 7 10580. 3 Feb. 2016, doi:10.1038/ncomms10580
14.Jiang, Lin et al. “Leptin receptor-expressing neuron Sh2b1 supports sympathetic nervous system and protects against obesity and metabolic disease.” Nature communications vol. 11,1 1517. 23 Mar. 2020, doi:10.1038/s41467-020-15328-3
15.Walker, William H 2nd et al. “Acute exposure to low-level light at night is sufficient to induce neurological changes and depressive-like behavior.” Molecular psychiatry vol. 25,5 (2020): 1080-1093. doi:10.1038/s41380-019-0430-4
16.Zhang, Xue-Ying et al. “Huddling remodels gut microbiota to reduce energy requirements in a small mammal species during cold exposure.” Microbiome vol. 6,1 103. 8 Jun. 2018, doi:10.1186/s40168-018-0473-9
17.Ingiosi, Ashley M et al. “A Role for Astroglial Calcium in Mammalian Sleep and Sleep Regulation.” Current biology : CB vol. 30,22 (2020): 4373-4383.e7. doi:10.1016/j.cub.2020.08.052
18.Padilla, Stephanie L et al. “Kisspeptin Neurons in the Arcuate Nucleus of the Hypothalamus Orchestrate Circadian Rhythms and Metabolism.” Current biology : CB vol. 29,4 (2019): 592-604.e4. doi:10.1016/j.cub.2019.01.022
植入式生理信號無線遙測系統用于長時間測量清醒無束縛的大鼠、小鼠、兔子、比格犬、猴子、魚等多種動物的心率、體溫和活動量等生理參數。使用此系統可以保證動物在籠內自由活動,不需要麻醉或束縛,這樣測量到的生理信號更能反映自然狀態下的動物生理狀況。可用于生物節律研究和相關的生命體征監測。
植入式生理信號無線遙測系統可無線遙測和記錄實驗動物的:心率、體溫、活動量.
植入式生理信號無線遙測系統由植入體(E-Mitter)、接收數據轉換器(Receiver)、電纜和記錄分析計算機(VitalView)構成。1厘米大小的植入體E-Mitter集成了傳感器、放大器和無線信號發射器,根據測量信號不同有多種規格。植入式E-Mitter轉發器不需電池,由接收數據轉換器(Receiver)輸出電力。實驗人員將植入體埋入動物皮下,生理信號被植入體采集到并轉換成相應的電信號后用無線電發射出來,由飼養籠下方的接收器接收到并傳遞給數據轉換器,完成數據轉換后送入**處理器進行數據處理。系統可同時連接32個接收器,完成大規模的試驗。
植入體(E-Mitter)是植入在動物體內的微型設備,它集成了傳感器,放大器,數字轉換,無線發射的功能并解決了生物體的抗排異反應。植入體有用于測量生物心率,體溫和活動量等多種參數的規格。
植入式生理信號無線遙測系統的主要特點:
? 無線遙測
? 植入式E-Mitter轉發器沒有電池
? 長期監測-植入裝置后允許連續、遙測實驗動物一生
? 準確、可靠,報告清醒無束縛動物的生理和行為數據
E-Mitter(植入體系統)主要技術參數:
ER4000 信號接收器
ER4000信號接收器,用于給E-Mitters充電和接收E-Mitters傳回來的測量數據。適合標準的大小鼠飼養籠具。
信號接收器的主要參數
VitalView軟件
激發接收器和感應器通過VitalView軟件連接到電腦。可以記錄240個數據通道,典型應用120個測試對象,對于E-mitter系統32個測試對象。
VitalView軟件可以設置實驗參數和采集數據。軟件管理與硬件的連接,并且儲存顯示基本的圖形化的數據分析。軟件也提供統計形式的數據顯示,可以輸出數據。
如只需要測量大鼠、小鼠的核心體溫,可以選擇植入式體溫膠囊,對體溫數據進行遙測:
參考文獻:
1.Ganeshan, Kirthana et al. “Energetic Trade-Offs and Hypometabolic States Promote Disease Tolerance.” Cell vol. 177,2 (2019): 399-413.e12. doi:10.1016/j.cell.2019.01.050
2.Li, Yongguo et al. “Secretin-Activated Brown Fat Mediates Prandial Thermogenesis to Induce Satiation.” Cell vol. 175,6 (2018): 1561-1574.e12. doi:10.1016/j.cell.2018.10.016
3.Dodd, Garron T et al. “Leptin and insulin act on POMC neurons to promote the browning of white fat.” Cell vol. 160,1-2 (2015): 88-104. doi:10.1016/j.cell.2014.12.022
4.Pi?ol, Ramón A et al. “Brs3 neurons in the mouse dorsomedial hypothalamus regulate body temperature, energy expenditure, and heart rate, but not food intake.” Nature neuroscience vol. 21,11 (2018): 1530-1540. doi:10.1038/s41593-018-0249-3
5.Li, Jin et al. “Neurotensin is an anti-thermogenic peptide produced by lymphatic endothelial cells.” Cell metabolism vol. 33,7 (2021): 1449-1465.e6. doi:10.1016/j.cmet.2021.04.019
6.Pi?ol, Ramón A et al. “Preoptic BRS3 neurons increase body temperature and heart rate via multiple pathways.” Cell metabolism vol. 33,7 (2021): 1389-1403.e6. doi:10.1016/j.cmet.2021.05.001
7.Krisko, Tibor I et al. “Dissociation of Adaptive Thermogenesis from Glucose Homeostasis in Microbiome-Deficient Mice.” Cell metabolism vol. 31,3 (2020): 592-604.e9. doi:10.1016/j.cmet.2020.01.012
8.Sustarsic, Elahu G et al. “Cardiolipin Synthesis in Brown and Beige Fat Mitochondria Is Essential for Systemic Energy Homeostasis.” Cell metabolism vol. 28,1 (2018): 159-174.e11. doi:10.1016/j.cmet.2018.05.003
9.Heine, Markus et al. “Lipolysis Triggers a Systemic Insulin Response Essential for Efficient Energy Replenishment of Activated Brown Adipose Tissue in Mice.” Cell metabolism vol. 28,4 (2018): 644-655.e4. doi:10.1016/j.cmet.2018.06.020
10.Dodd, Garron T et al. “A Hypothalamic Phosphatase Switch Coordinates Energy Expenditure with Feeding.” Cell metabolism vol. 26,2 (2017): 375-393.e7. doi:10.1016/j.cmet.2017.07.013
11.Keipert, Susanne et al. “Long-Term Cold Adaptation Does Not Require FGF21 or UCP1.” Cell metabolism vol. 26,2 (2017): 437-446.e5. doi:10.1016/j.cmet.2017.07.016
12.Wang, Tongfei A et al. “Thermoregulation via Temperature-Dependent PGD2 Production in Mouse Preoptic Area.” Neuron vol. 103,2 (2019): 309-322.e7. doi:10.1016/j.neuron.2019.04.035
13.Chavan, Rohit et al. “Liver-derived ketone bodies are necessary for food anticipation.” Nature communications vol. 7 10580. 3 Feb. 2016, doi:10.1038/ncomms10580
14.Jiang, Lin et al. “Leptin receptor-expressing neuron Sh2b1 supports sympathetic nervous system and protects against obesity and metabolic disease.” Nature communications vol. 11,1 1517. 23 Mar. 2020, doi:10.1038/s41467-020-15328-3
15.Walker, William H 2nd et al. “Acute exposure to low-level light at night is sufficient to induce neurological changes and depressive-like behavior.” Molecular psychiatry vol. 25,5 (2020): 1080-1093. doi:10.1038/s41380-019-0430-4
16.Zhang, Xue-Ying et al. “Huddling remodels gut microbiota to reduce energy requirements in a small mammal species during cold exposure.” Microbiome vol. 6,1 103. 8 Jun. 2018, doi:10.1186/s40168-018-0473-9
17.Ingiosi, Ashley M et al. “A Role for Astroglial Calcium in Mammalian Sleep and Sleep Regulation.” Current biology : CB vol. 30,22 (2020): 4373-4383.e7. doi:10.1016/j.cub.2020.08.052
18.Padilla, Stephanie L et al. “Kisspeptin Neurons in the Arcuate Nucleus of the Hypothalamus Orchestrate Circadian Rhythms and Metabolism.” Current biology : CB vol. 29,4 (2019): 592-604.e4. doi:10.1016/j.cub.2019.01.022